EFFECT OF YOGA TRAINING ON HANDGRIP, RESPIRATORY PRESSURES AND PULMONARY FUNCTION

MANDANMOHAN*, LAKSHMI JATIYA, KAVIRAJA UDUPA AND ANANDA BALAYOGI BHAVANANI

Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Pondicherry – 605 006

(Received on February 5, 2003)

Abstract: Although there are a number of reports on the effect of yoga training on pulmonary functions, very few studies have been undertaken on the effect of yoga training on respiratory pressures and handgrip endurance. Hence the present work was planned to study the effect of yoga training on hand grip strength (HGS), hand grip endurance (HGE), maximum expiratory pressure (MEP), maximum inspiratory pressure (MIP), forced expiratory volume (FEV), forced expiratory volume in first second (FEV₁) and peak expiratory flow rate (PEFR). 20 school children in the age group of 12 to 15 years were given yoga training (asans and pranayams) for 6 months. 20 age and gender-matched students formed the control group. Yoga training produced statistically significant (P<0.05) increase in HGS and HGE. MEP, MIP, FEV, FEV₁ and PEFR also increased significantly (P<0.001) after the yoga training. In contrast, the increase in these parameters in the control group was statistically insignificant. Our study shows that yoga training for 6 months improves lung function, strength of inspiratory and expiratory muscles as well as skeletal muscle strength and endurance. It is suggested that yoga be introduced at school level in order to improve physiological functions, overall health and performance of students.

Key words: yoga training pulmonary functions respiratory muscle strength muscle endurance

INTRODUCTION

There are a number of reports on the effect of yoga training on pulmonary functions like forced expiratory volume (FEV), forced expiratory volume in 1st second (FEV₁) and peak expiratory flow rate (PEFR) (1, 2, 3, 4, 5). However, very few workers have studied the effect of yoga training on respiratory pressures i.e. maximum expiratory pressure (MEP) and maximum inspiratory pressure (MIP). Respiratory pressures are easily measured, objective and sensitive indices of respiratory...
muscle strength and can be altered in disease states even when other commonly measured pulmonary function tests show little abnormality (6). In an earlier work, we have found that yoga training for 12 weeks results in a significant improvement in MEP and MIP in normal young volunteers (7). In the same study, we also observed a significant increase in handgrip strength (HGS) after yoga training and this is in agreement with the findings of other workers (8, 9, 10). However, the effect of yoga training on handgrip endurance (HGE) has been studied by only a few workers. While Tran et al (10) have reported a significant increase in muscular endurance after 8 weeks yoga training program, Dash and Telles (11) have concluded that yoga training does not increase muscle endurance. Handgrip dynamometry is an indicator of muscle function and nutritional status. As an objective and accurate physiological test that is easy to perform, it can be used as a bedside test to predict pre-operative nutritional status and post-operative complications (12). Keeping this in mind, we planned to study the effect of yoga training on these parameters. Since most of the studies on the effect of yoga training on pulmonary functions have been conducted on subjects above 18 yr in age, the present study was carried out on school going children from younger age (12-15 yr) group.

METHODS

 Subjects and Training: 40 student volunteers of either gender studying in 8th standard at Government Higher Secondary School, Indira Nagar, Pondicherry were motivated and recruited for the present study. They had no previous exposure to yoga training and none of the subjects had a history of substance abuse. Respiratory and cardiovascular diseases were ruled out by their history and clinical examination. Their age was 12 to 15 (13.21 ± 0.10, SEM) years, weight 20 to 57 (34.97 ± 1.24, SEM) kilograms, height 1.3 to 1.66 (1.48 ± 0.01, SEM) meters and body mass index (BMI) 8.33 to 23.30 (15.90 ± 0.44, SEM) units. After briefing about the study protocol, informed consent was obtained from them as well as their parents. The subjects were divided randomly into two groups of 20 each.

 Group I (yoga group) : Group I subjects were taught the following asans and pranayams: talasan, utkatasan, trikonasan, ardhamatsyendrasan, bakasan, pavanmuktasan, navasan, noukasan, matsyasan, pashchimottanasan, halasan, bhujangasan, shalabhasan, sarvangasan, shavasan, mukh-bhastrika, mahat yoga pranayam, nadi shuddhi and savitri pranayam. Each pose was held for 30 seconds and a short period of rest was given between the poses. Each pranayam was performed nine times. Shavasan was performed at the end for ten minutes. Detailed description of these techniques is given in standard texts on yoga (13, 14).

 The subjects underwent yoga training over a period of 2 weeks. After the training period, 45 minute practice sessions were held regularly, Monday through Saturday, for a total duration of 6 months under our direct supervision.

 Group II (control group) : Group II subjects did not receive any yoga training. They were asked to study in a classroom...
while Group I subjects were undergoing yoga training.

Parameters: 2–3 days prior to pre-training recordings, the subjects were familiarized with the laboratory environment and their anthropometric measurements were taken. They were given instructions about the experimental procedures and practice trials were administered until we were satisfied that the subjects performed the test as required of them. Pre and post training measurements were taken about 2 hours after a light breakfast.

Handgrip strength and endurance: HGS (mm Hg) was measured with the dominant hand gripping an inflated cuff of a mercury manometer while the subject was sitting comfortably in a chair. The arm was extended in front at the shoulder level and kept horizontal to the ground. For determining HGE, the subject was asked to maintain 1/3rd of HGS in a sustained squeeze for as long as possible and the time (sec) was noted. In all our subjects, right hand was dominant hand. Dash and Telles (8) have reported that hand grip strength of right hand is greater than that of left hand.

Respiratory pressures: MEP was determined by asking the subject to blow against mercury column of a manometer after taking in a full breath. The maximum level at which the mercury column could be maintained for about 3 sec was noted. MIP was determined by asking the subject to perform maximum inspiratory effort against the mercury column after breathing out fully. MIP that could be maintained for about 3 sec was noted. It was ensured that the subjects did not use oral muscles to develop pressure or tongue to block the tubing.

Spirometry: FEV, FEV$_1$ and PEFR were measured by computerized spirometer (Spirocheck, Morgan, England). The subject was instructed to take maximum inspiration and blow into the mouthpiece as rapidly, forcefully and completely as possible. It was ensured that a tight seal was maintained between the lips and the mouthpiece of the spirometer.

The above mentioned parameters were measured before and after the 6 months study period in both the groups. For each parameter, three trials at three minute intervals were given and highest of the three values was used for statistical analysis.

Statistical analysis

The data was analyzed using Student’s paired ‘t’ test to compare the pre and post training values of both the groups. P value of less than 0.05 was accepted as indicating significant difference between the compared values.

RESULTS

Yoga training of six months produced a significant (P<0.05) increase in HGS and HGE in our group I subjects (Table I). It also produced a highly significant (P<0.001) increase in MEP, MIP, FEV, FEV$_1$ and PEFR. In contrast, the changes in these parameters in the control group subjects were statistically insignificant.
involve sustained isometric contraction of
the shoulder, chest and arm muscles. Consequent improvement in the strength
and endurance of these muscles can explain
the significant increase in HGS and HGE.
Although HGS and HGE are simple methods
to assess skeletal muscle strength and
nutritional status, normative data on these
parameters is limited. These tests can be
used to determine the effectiveness of
health-promoting programs like yoga
training. They can also be used as objective
clinical measures for determining the
severity of the disease process and
effectiveness of rehabilitation programs.
Hence, there is a need to carry out further
studies on these parameters in normal
subjects and patients with neuromuscular
and nutritional disorders.

In the present study MEP and MIP
increased significantly following six months
of yoga training in our group I subjects.
Our results do not agree with those of Gopal
et al (16) who have reported a lower MEP
in yoga trained subjects as compared to

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Yoga group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>After</td>
<td>Before</td>
</tr>
<tr>
<td>HGS (mm Hg)</td>
<td>129.53±8.96</td>
<td>147.37±9.57*</td>
</tr>
<tr>
<td>HGE (sec)</td>
<td>46.21±4.38</td>
<td>57.16±5.86*</td>
</tr>
<tr>
<td>MEP (mm Hg)</td>
<td>29.32±4.63</td>
<td>46.05±5.5**</td>
</tr>
<tr>
<td>MIP (mm Hg)</td>
<td>30.26±3.07</td>
<td>65.53±5.86**</td>
</tr>
<tr>
<td>FEV (L)</td>
<td>1.85±0.07</td>
<td>2.21±0.09**</td>
</tr>
<tr>
<td>FEV (_1) (L)</td>
<td>1.84±0.07</td>
<td>2.12±0.09**</td>
</tr>
<tr>
<td>PEFR (L/min)</td>
<td>271.21±14.82</td>
<td>336.16±19.04**</td>
</tr>
</tbody>
</table>

Values are Mean ±SEM for 20 subjects in each group. *P<0.05, **P<0.001.

DISCUSSION

In the present study, HGS and HGE
increased significantly after six months of
yoga training. This is consistent with our
earlier finding that yoga training produces
a significant increase in HGS (7). Raghuraj
et al (9) have reported that pranayam
training results in significant increase in
the HGS of both hands. On the other hand,
Dash and Telles (11) have concluded that
yoga training produces an increase in motor
speed for repetitive finger movements, but
not in strength or endurance. The increase
in HGS and HGE in our yoga group is
consistent with the findings of Tran et al
(10) who have reported that eight week
hatha yoga training results in a significant
increase in isokinetic muscular strength and
isometric muscular endurance. Raju et al
(15) have also reported that yoga training
results in a significant increase in maximal
work output with a significant reduced level
of oxygen consumption per unit work. Some
of the yogic postures in our study like
bakasan, bhujangasan and shalabhasan

In the present study MEP and MIP
increased significantly following six months
of yoga training in our group I subjects. Our results do not agree with those of Gopal
et al (16) who have reported a lower MEP
in yoga trained subjects as compared to
Indian J Physiol Pharmacol 2003; 47(4)

Yoga on Handgrip, Respiratory Pressures and PFT

untrained ones. However, the present findings are consistent with those of our earlier work (7). Chen and Kuo (17) have reported that inspiratory muscle endurance is greater in physically active men than sedentary men. The increase in MEP and MIP in our yoga group indicates that yoga training improves the strength of the expiratory as well as inspiratory muscles. *Mukh-bhastrika* included in our present training program involves powerful strokes of exhalation, which trains the subject to make full use of diaphragm and abdominal muscles. Slow, deep and full exhalation and inhalation during *mahat yoga* and *savitri pranayams* also train the respiratory muscles. Respiratory muscles are vital and evaluation of their performance is important. Respiratory pressures are specific and sensitive indices of respiratory muscle strength and they are easy to measure and reproducible. Black and Hyatt (6) have demonstrated that their values are altered before there is alteration in other commonly used pulmonary function tests. Hence, evaluation of respiratory muscle strength is important from physiological as well as clinical point of view. Since the highest MEP is obtained at lung volumes of more than 70% of total lung capacity and the highest MIP is obtained at lung volumes of less than 50% of total lung capacity (16), we measured MEP after full inspiration and MIP after full expiration.

Our present findings that pulmonary function tests such as *FEV, FEV₁* and *PEFR* increased significantly after yoga training is consistent with earlier studies. Bhole et al (1) have reported a significant increase in vital capacity after three weeks of yoga training. In a study on 287 college students (both men and women), Birkel and Edgren (2) found that yoga training produced a significant improvement in vital capacity across all categories of subjects that included smokers, asthmatics as well as those with no known lung disease. Joshi et al (5) have reported that *pranayam* training improves ventilatory functions in the form of increase in *FEV, FEV₁* and *PEFR*. Makwana et al (3) and Yadav and Das (4) also found a significant increase in these parameters after yoga training. Thus our results are consistent with the findings of other workers who have reported beneficial effects of yoga training on pulmonary function as measured by spirometry. Vital capacity is a critical component of good health and its determination is important for normal subjects, smokers and patients with respiratory and cardiovascular conditions. *PEFR* is an inexpensive, accurate and simple test for measuring airway resistance and strength of expiratory muscles.

The baseline values of our subjects are lower than those reported in the literature. The values for European subjects are known to be higher than the age and sex matched Indian subjects and this has been attributed to racial background and nutritional status. Our subjects were sedentary, from low socio-economic background and had low weight and BMI. Hence their baseline values were lower than the values reported in the literature. Yoga training resulted in appreciable and statistically significant improvement in all the parameters measured in this study. In conclusion, the present study shows that six month yoga training produces a significant improvement in handgrip strength and endurance,
respiratory pressures and spirometric values and this improvement is appreciable in underweight children.

ACKNOWLEDGEMENTS

The authors wish to thank Department of Science and Technology, Government of Pondicherry and Central Council for Research in Yoga and Naturopathy (CCRYN), New Delhi for funding this research project. We also thank Mr. G. Kumaran for assisting in the yoga training and Miss R. Lalithambiga for her technical assistance.

REFERENCES